

ADVANCED ORBITAL MANUFACTURING SYSTEM

BEN GRIMSLEY

26 NOVEMBER 2024

OVERVIEW

- Introduction
- System Needs Analysis
- Requirements Analysis & Concept of Operations
- Functional Analysis
- Conceptual Design
- Trade Study
- Test and Evaluation Plan
- Risk Management
- A-Specification
- Capstone Wrap-up

BIOGRAPHY

• Education:

- SOON: MS in Systems Engineering from Johns Hopkins University.
- BS in Mechanical Engineering from Rochester Institute of Technology.

Professional Experience:

- Senior Member of Technical Staff at Draper:
 - Developing interface control documents and subsystem requirements for VLEO satellite supporting DARPA's Otter program.
 - Using Model-Based Systems Engineering (MBSE) to design adaptable architectures for guidance systems in US Navy programs.
- Technical Project Manager at Boston Engineering Corporation:
 - Developed EOD ROV and magnetic ballast tank inspection robot for US Navy.
 - Led the creation of automated quality assurance systems and anchoring software for autonomous vehicles.
- US Air Force Officer:
 - Contributed to programs like Minotaur launch, Falcon 9 certification, and X-37B recovery.

Hobbies:

 \bullet

• Woodworking, collecting vinyl records, reading, banjo

SYSTEM NEED ANALYSIS

PROJECT OVERVIEW & SYSTEM NEED

- Introduction to In-Space Servicing, Assembly and Manufacturing (ISAM):
 - U.S. ISAM National Strategy underscores ISAM's transformative potential for scientific innovation, economic growth, and space commercialization
 - Key Advantages:
 - Overcoming launch size constraints
 - Enhancing Flexibility via on-orbit upgrades
 - Cost savings through reduced structural mass
 - Decreasing ground based testing needs
 - Enabling structures unbuildable in Earth's gravity
- AOMS Objective:
 - A modular platform to enable large-scale in-space manufacturing of highvalue products

IN-SPACE SERVICING, ASSEMBLY, AND MANUFACTURING NATIONAL STRATEGY

Product of the IN-SPACE SERVICING, ASSEMBLY, AND MANUFACTURING INTERAGENCY WORKING GROUP of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

April 2022

ZBLAN FIBER PRODUCTION – AOMS INITIAL USE CASE

- ZBLAN is a heavy metal fluoride glass(<u>Z</u>rF₄-<u>B</u>aF₂-<u>L</u>aF₃-<u>A</u>lF₃-<u>N</u>aF) known for exception optical properties:
 - Attenuation as low as 0.01 dk/km (vs. 0.2 db/km for silica fibers)
- Microgavity benefits the production of ZBLAN by suppressing convection currents and sedimentation
 - Fibers produced in microgravity exhibit 10–100x
 better performance compared to Earth-based manufacturing
- ZBLAN production has been proven onboard the ISS, and is a high TRL candidate for AOMS
 - Flawless Photonics produced more than 11km aboard the ISS in Mar 2024, with 7 runs exceeding 700m

STAKEHOLDER NEEDS ANALYSIS

- Stakeholder Groups:
 - End-Users: Require high-quality ZBLAN fibers for advanced applications.
 - Financial Investors: Demand economic viability and return on investment.
 - Regulatory Bodies: Enforce compliance with safety and operational standards.
 - Scientific Community: Seek innovative research opportunities enabled by AOMS
 - Commercial Partners: Focus on scalability and integration into market demands.
- Stakeholder Needs:
 - Technical Performance: Reliable and scalable ZBLAN production.
 - Economic Viability: Cost-effective operations and ROI.
 - Compliance: Adherence to regulatory and safety standards.
 - Innovation: Enable groundbreaking manufacturing processes.
- Traceability Matrix maps needs to stakeholders, Identifies shared interests and resolves competing priorities.
 - Guides requirement development and resource allocation.

Trace		SN-1 Advanced techniques	SN-2 Opgrade capability	SN-3 Support exploration goals	SN-4 Regulatory compliance	SN-5 Sciencific experiments	SN-7 Standard power operation	SN-8 Scalable production	SN-9 Treaty adherence	SN-10 Orbital asset risk manageme	SN-11 Minimize environmental impa	SN-12 Payload compatibility	SN-13 Manageable mass	SN-14 Efficient deployment	SN-15 Viable business model	SN-16 Market Risk Strategy	SN-17 Multiple revenue streams	SN-18 High-quality production	SN-19 Reliable production capacity	SN-20 Competitive pricing	 SN-24 Quality assurance and certif 	SN-25 Automated manufacturing	SN-26 In-situ resource utilization ····	SN-27 Technology demonstration	SN-28 Supply chain management
🖃 🛄 Stakeholders		-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	-	-	-	-
\mathbb{R}_{s} End-User Representative	4																	~	~	^	~				
\mathbb{R}_{s} Financial Investor	ω														5	~	~								
\mathbb{R}_{s} Government Space Agency	S		ĸ	R	R	-																-	~	1	
😤 Private Launch Provider	ω											5	5	5											
😤 Space Policymaker	ω								R	~	~														
$- rac{1}{2}$ Space Systems Industry Leader	4					ĸ	R	R	`															_	5
一	ω	~																				1			

MISSION OBJECTIVES

- Mission Need:
 - Develop a scalable, upgradable orbital system to produce high quality materials in microgravity
 - Ensure regulatory compliance, environmental responsibility, and compatibility with existing space infrastructure
 - Support national space goals, scientific research, and commercial viability with sustainable operations

#	A Name	Text	Legend	8	🗋 Sta	akehold	ler Need	ds		È								
1	Obj-1 High-Capacity ZBLAN Production	Establish a versatile manufacturing platform capable of producing high-quality ZBLAN optical fibers in microgravity, with a production capacity of up to 50 km per mission and a manufacturing rate exceeding 3 km per hour.	↗ DeriveReqt			als		lon		agement plar				Sm C	pacity	l certification	tion	nent
2	Obj-2 Advanced Thermal Management	Implement advanced thermal management systems to ensure precise control over processing environments, with capabilities extending beyond 1000°C	COMPANIC ,		niques	ation go	iments	tion r operat	ction	risk mana	atibility -	ass	is model trategy	iue strea roductio	uction ca	ance and anufactu	ce utiliza	nanagen
3	Obj-3 Autonomous Operations	Achieve a high degree of autonomous operations, minimizing the need for crew intervention through process optimization, quality control, and fault recovery systems.	orcial psic		ced tech le capab	t explor.	tory con fic exper	rintegra rid powe	e produc adherer	al asset i iza anvir	ad comp	geable n ent deplo	: busines et Risk St	le reven quality p	ole produ etitive p	:y assura nated ma	u resour	y chain r
4	Obj-4 Efficient Material Management	Incorporate efficient material handling and storage systems, including potential recycling capabilities to manage raw materials, finished products, and waste	evelopt p		1 Advan 2 Upgrac	3 Suppor	4 Regula 5 Scientil	6 Smooth 7 Standa	8 Scalabl 9 Treaty	10 Orbit:	12 Paylo	13 Mana 14 Efficie	15 Viable 16 Marke	17 Multip 18 High-	19 Reliat 20 Comp	24 Qualit	26 In-sit	28 Suppl
5	Obj-5 Multi-Mission Support	Support secondary missions and scientific experiments without compromising primary production objectives	Philoden Chip		- N N N	Š	- NS NS NS NS	NS NS	SNNS	-NS E		s s N	SN- SN-	SN- SN-	SN-	S-NS	- NS	NS NS
-	- nr nr	Demonstrate economic viability by achieving a positive return on investment within 5	⊡. 🛅 Program Objectives		4 2	1	2 1	2 2	3 1	2 3	1	1 2	3 1	2 3	3 4	2 1	. 1	i 1
6	🗹 Obj-6 Economic Viability 🕤 🖉	vears of full operational capability		8	2				2				2	2	22	2	1	
		Comply with all calculated standards international suidalines, and convlations while	🗹 Obj-2 Advanced Thermal Management	4	2			4						4			1	/
7	🗹 Obj-7 Regulatory Compliance 🏾 🔗 🖓	minimizing environmental impact	🗹 Obj-3 Autonomous Operations	12	2			44		2		2	2	2	22	22	1	1
			🗹 Obj-4 Efficient Material Management	12	11			2	2	Ľ	' L' L	11			4		4	12
8	✓ Obj-8 Sustainable End-of-Life Plan	Develop and implement a comprehensive end-of-life plan that includes safe deorbiting or	🗹 Obj-5 Multi-Mission Support	5	2	1	2							2			1	1
		repurposing of at least 90% of the system's components	Obj-6 Economic Viability	6					2				22	2	22			1
			🗹 Obj-7 Regulatory Compliance	4		E.	2		4	22	/							
				2			/				/							

REQUIREMENTS ANALYSIS & CONOPS

CONOPS

Legend

Lifecycle Phases Support Systems System of Interest

Advanced Orbital Manufacturing System OV - 1

4. Manufacturing Operations

- Initiate ZBLAN fiber production
- Monitor and control processes
- Implement quality assurance

Logistics Craft / AOMS Material Handling

- 6. Product Return
- Prepare ZBLAN Fibers for transpc
- Burn to re-entry orbit
- Monitor systems during descept

3. On Orbit Assembly & Activation

- Assemble AOMS modules
- Activate core systems
- Calibrate manufacturing equipment

Logistics Craft / AOMS Material Handling

5. Resupply & Maintenance

- Proximity & Rendezvous operationsReceive ZBLAN preform billets
- Monitor systems during ascent Conduct functional tests of subsystems

Launch Facility

On Orbit Support

Relay Satellite

GPS Satellites

AOMS Spacecraft

10. End-of-Life & Decommissioning

- Cease manufacturing operations
- Secure and package equipment
- Prepare for controlled deorbit

ZBLAN Manufacturer

Product Acceptance

Prepare product for distribution

Specialty Equipment & Spares

Recovery Vessel

7. Recovery & Transport

- Ocean recovery
- Extract ZBLAN fibers and cargo
- Transport fibers to processing facilities

. Design, Development & Earth -Based V&V **Post-Flight Processing**

- Develop control systems
- Prototype key components
- Validate ZBLAN production process

AOMS Manufacturer

9. System Upgrades & Expansion

- Install new manufacturing modules
- Upgrade existing capabilities
- Expand production capacity

2. Launch & Deployment

- Prepare AOMS for launch
- Conduct launch operations
- Deploy AOMS in target orbit

USE CASES & MISSION SCENARIOS

- Key Use Cases:
 - Produce ZBLAN Fiber: High-quality manufacturing in microgravity.
 - Scientific Research: Enable experiments in materials and fluid dynamics.
 - System Maintenance: Diagnostics, repairs, and in-orbit servicing.
 - Resource Management: Efficient resupply and product return.
 - Performance Analysis: Real-time monitoring and optimization.
 - Regulatory Compliance: Adherence to safety and space debris standards.
 - System Upgrades: Adaptability to new materials and processes.
- Operational Scenarios:
 - ZBLAN Fiber Production: Automated drawing, monitoring, and quality control
 - Multi-Material Research: Flexible setups for concurrent experiments.
 - Anomaly Response: Remote diagnostics and recovery protocols.
 - Resupply & Return: Coordinated material handling and inventory updates.

SYSTEM REQUIREMENTS DERIVATION

- Identified Stakeholder Needs: Gathered goals and expectations from end-users, investors, and regulators
- CONOPS & Lifecycle Analysis: Defined system lifecycle stages, ensuring coverage from design to end-of-life.
- Use Case Analysis: Mapped system behaviors and interactions
- Derive Requirements: Translate operational needs & performance targets into quantifiable, verifiable requirements
- Traceability: Aligned each requirement with stakeholder needs, ensuring validation and consistency

KEY PERFORMANCE PARAMETERS (KPPS)

- KPPs are critical success factors that are <u>non-negotiable</u> for system success. <u>If unmet, the project cannot continue</u>.
- AOMS KPPs:
 - High-Quality Production: <1 crystallization defect per km of ZBLAN fiber in microgravity.
 - Continuous Operation: 5 years of operation without human intervention.
 - Operational Availability: 95% operational availability.
 - Production Ramping: Scale production to 50 km per draw.
 - Automation: 95% autonomous operation, including autorestart after breaks.
 - Fiber Quality: Attenuation of 0.05 dB/km or lower at 2.5 μ m.
 - Production Rate: 500 meters of fiber per day.
 - Production Continuity: Auto-restart within 10 minutes, maintaining 90% of quality

#	Name	Text	KPP
2	🗉 🛅 Operational Requirements	in the second	
An Ou	🗆 📧 O Operational	The system shall operate continuously and securely in the space environment, producing high- quality ZBLAN fibers while maintaining operational availability, autonomy, and microgravity conditions. It shall be capable of scaling production, handling multiple materials, and ensuring radiation protection.	🗌 false
6	0.21 Microgravity Optimization	The system shall maintain a microgravity environment with less than 10^-6 g during ZBLAN fiber production.	🗹 true
14	E 0.13 Automation	The system shall operate autonomously for at least 95% of its production time, including the ability to automatically restart fiber production after breaks.	<mark>∕ true</mark>
15	O.12 Production Ramping	The system shall be capable of scaling production capacity from initial demonstration levels to full commercial production levels of up to 50 km of ZBLAN fiber per draw.	🗹 true
22	E 0.5 Operational Availability	The system shall maintain a minimum of 95% operational availability throughout its design life.	✓ true
35	0.2 Continuous Operation	The system shall be designed to operate continuously in the space environment for a minimum of 5 years without requiring physical human intervention.	🗹 true
36	0.1 High-Quality Production	The system shall produce ZBLAN fibers with less than 1 crystallization defect per kilometer of fiber manufactured in microgravity	🗹 true
58	😑 🛅 Performance Requirements	24b.	
59	E P Performance	The system shail achieve superior performance metrics in ZBLAN fiber production, including fiber quality, production rate, yield, and consistency. It shall demonstrate commercial viability through competitive pricing and multiple revenue streams, while ensuring energy efficiency and rapid production recovery after interruptions.	☐ false
63	P.6 Production Continuity	The system shall be capable of automatically restarting fiber production within 10 minutes of a production break, maintaining at least 90% of pre-break production quality.	🗹 true
66	P.3 Manufacturing Yield	The system shall achieve a manufacturing yield of at least 95% usable fiber.	✓ true
67	E P.2 Production Rate	The system shall maintain a production rate of at least 500 meters of ZBLAN fiber per day.	✓ true
68	P.1 Fiber Quality	The system shall produce ZBLAN fibers with attenuation rates of 0.05 dB/km or lower at 2.5 µm wavelength.	✓ true

FUNCTIONAL ANALYSIS

You are here

FUNCTIONAL ANALYSIS: CONTEXT DIAGRAM

- Purpose:
 - Shows high-level interactions between AOMS and external systems/entities.
- Key Elements:
 - AOMS as a Black Box: Focus on mission-level interactions, not internal components.
 - Inputs/Outputs: Displays flow of resources, data, and control signals to/from AOMS.
 - External Systems: Includes interactions with launch vehicles, ground control, and resupply capsules.
- System-Level View:
 - Illustrates how AOMS supports key objectives like fiber production and resource management.
- Foundation for Functional Analysis:
 - Serves as the basis for detailed functional decomposition and system design.

TOP LEVEL FUNCTION ACTIVITY DIAGRAM

- Purpose:
 - Visualizes the primary operations and sequence of AOMS's core functions.
 - Key Functions:
 - 1. Autonomous Manufacturing Operations
 - 2. Maintain Platform Availability
 - 3. Regulatory Compliance
 - 4. Manage Resources & Logistics
 - 5. Fault Recovery & Remote Override
 - 6. Monitor System Performance
 - 7. On-Orbit Assembly & Upgrades
 - 8. Manage Orbital Position & Attitude
- Flow of Activities:
 - Control flows show sequence and dependencies, while object flows represent materials and data movement.
- System Overview:
 - Illustrates how AOMS integrates core functions, ensuring smooth operation from manufacturing to maintenance.

EXAMPLE DECOMPOSITION OF L0 FUNCTIONS TO L1

- Purpose of Decomposition:
 - Breaks down high-level functions into manageable tasks for easier design and implementation.
- Why Decompose?
 - Clarifies Operations and identifies specific actions.
 - Simplifies Complexity by breaking functions into smaller components.
 - Enables Design by providing clear tasks for development.
- Decomposition Example:
 - L0 Function: Conduct Autonomous Orbital Manufacturing Operations
 - L1 Functions: Produce ZBLAN Fiber, Monitor Microgravity Conditions, Monitor Production

DECOMPOSITION TO L2/L3 & BINDING/COUPLING

- Purpose:
 - Break down L0 functions into L1, L2, and L3 subfunctions to ensure the system is designed with acceptable risk.
- Process:
 - L1 Functions: High-level tasks (e.g., fiber production, thermal control).
 - L2 Functions: More detailed tasks (e.g., heating preform, monitoring microgravity).
 - L3 Functions: Specific tasks (e.g., adjust heating rate, measure fiber tension) for clear implementation.
- Binding and Coupling Considerations:
 - Tight Binding: Group related functions to reduce redundancy and increase cohesion.
 - Loose Coupling: Assign unrelated functions to separate subsystems to enhance flexibility and minimize interdependencies.

CA Name	Supporting L1 Functions	Supporting L2 Functions	Supporting L3 Functions
Contentie	1.1 Produce ZBLAN Fiber(context Manufacturing	1.4 Store Preform at Target Parameters(context Material Storage Unit)	1.1.6.1 Hold Spool(context Spool Linear Stage)
morely	Subsystem)	🔁 1.1.9 Adjust Production Parameters (Autonomous feedback loop)(context Process Control CSC)	1.1.6.2 Level Wind Spool(context Spool Stage Motor)
Cial Sic	1.2 Monitor Production(context Quality	1.1.6 Spool Fiber(context Spool Tension Motor)	1.1.6.3 Measure Tension(context Tension Sensor)
Corr.	Assurance Subsystem)	1.1.5 Cool/ Anneal Fiber(context Fiber Annealer)	🔁 1.1.7.1 Measure Fiber Diameter
* 0)		🔁 1.1.4 Draw Fiber from Preform(context ZBLAN Fiber Drawing Unit)	1.1.7.2 Detect Defects
		1.1.7 Monitor Fiber Quality(context Spectroscopy Sensor)	1.1.3.1 Hold Heater(context Heater Stage)
1. Conduct Autonomous		1.1.3 Heat Preform(context Preform Heater)	1.1.3.2 Rotate Heater Stage(context Heater Stage Motor)
Operations		🔁 4.1.5 Transfer Preform to Production (context Material Handling Robotics)	1.1.3.3 Hold Preform(context Preform Holder)
operations		1.1.8 Correct Defects(context Process Control CSC)	🔁 1.2.5.2 Amplify High Rate Transmission(context High Rate Transmitter Ar
		🔁 1.2.1 Collect Real-Time Production Data(context Production Data Logging CSC)	1.2.5.1 Switch Signal Path(context Duplexer)
		🔁 1.2.5 Transmit Data to Ground Control(context High Rate Antenna)	1.2.5.3 Transmit Low Rate Signal(context Low Rate Antenna)
		1.2.4 Generate Production Reports(context Onboard Computer)	🔁 1.2.5.4 Amplify Low Rate Transmission(context Low Rate Transmitter Amp
		1.2.2 Analyze Production Efficiency(context Onboard Computer)	
		19 400 D 4 10 1 10 1 10 1 10 1 10 1 10 1 1	A

FUNCTIONS TO REQUIREMENTS

- Purpose:
 - Establishes bi-directional traceability between L2 functions and system requirements using the <<Satisfy>> relationship in SysML.
- Process:
 - Decompose Functions: Break down high-level functions into L2 functions.
 - Map to Requirements: Use the <<Satisfy>> relationship in SysML to trace L2 functions to the corresponding requirements.
 - Verify Completeness: Traceability ensures all requirements are covered and highlights any missing requirements, which are added to the System Specification.
- Importance:
 - Ensures Completeness: Guarantees that all functional requirements are met.
 - Identifies Gaps: Highlights missing requirements for inclusion in the System Specification.
 - Supports Validation: Confirms that system functions align with defined requirements.
 - Improves Traceability: Provides clear, traceable connections between design and requirements.

You are here

CONCEPTUAL DESIGN

PHYSICAL CONTEXT DIAGRAM

- Purpose:
 - Shows AOMS's interactions with external entities, focusing on physical interfaces.
- Key Elements:
 - AOMS as the central system with external entities (e.g., launch vehicles, ground control, resupply capsules).
 - Inputs and Outputs: Labeled with implementation details (e.g., Ethernet for data, power cables for electricity).
- Difference from Functional Context Diagram:
 - The Physical Context Diagram focuses on physical interfaces (e.g., data cables, power connections) while the Functional Context Diagram focuses on functional interactions (e.g., commands, data flow).
 - This diagram emphasizes the hardware connections and physical resources used by AOMS.

TOP LEVEL PHYSICAL INTERNAL BLOCK DIAGRAM (IBD)

- Purpose:
 - Displays the top-level physical architecture of AOMS, showing subsystems and interfaces.
- Key Elements:
 - Subsystems: Main subsystems like ZBLAN fiber production and thermal control.
 - Interfaces: Connections such as cables, data links, and power cables.
- Focus:
 - Depicts the flow of material, energy, and data between subsystems.
- Importance:
 - Provides a high-level overview, ensuring subsystems are well-connected for seamless operation and guiding further design.

SUBSYSTEM PHYSICAL DECOMPOSITION (BDD & IBD)

• Purpose:

- Shows the physical decomposition of the manufacturing subsystem, detailing components and their interactions.
- Key Elements:
 - BDD: High-level breakdown of physical components (e.g., fiber drawing mechanisms, heating units)
 - IBD: Illustrates physical connections and interfaces (e.g., power cables, data links, mechanical connections).
- Importance:
 - Provides a complete view of the subsystem's behavior and physical integration, guiding detailed design and integration.

TOP-LEVEL PHYSICAL N2 DIAGRAM

• Purpose:

- Illustrates the interactions and data/material flows between subsystems at the top level.
- Key Elements:
 - Subsystems on the Diagonal: Represents the main subsystems (e.g., ZBLAN fiber production, thermal control).
 - Interactions/Flows: Shows what is transferred between subsystems (e.g., data, power, materials) and how they communicate.
- Focus:
 - Highlights the physical relationships and dependencies between subsystems, ensuring each subsystem supports the overall mission objectives.
- Importance:
 - Provides a clear overview of how subsystems interact physically and exchange resources, supporting system integration and functional completeness.

Inputs		Packaging Materials Proform Components Resupply Materials Repair Tools		Remote Overide Commands Software Data Padkage Data Query Denorbit Command Dodking Command Install Command		Nav Message Reflected Light Inertial Reference Torque Magnetism Starlight Sunlight	Reaction Mass		Sunlight	Drag Debris Shock Vibration	Ουφικε
	Manufacturing Subsystem	Spooled Fiber	Production Metrics Quality Metrics		Production Metrics The mai Data Production Data			Waste Heat			
	Preform	Logistics, Storage, & Repair Subsystem			Inventory Data Post Repair Test Report			Waste Heat			Padkage d Filber
			Qual ity Assurance Subsystem								
				Communications Subsystem	Deorbit Commands Install Command Policy Updates Regulatory Guidelines			Waste Heat			Restart Confirmation Resource Transfer Confirmation Overide Confirmation Performance Analysis Orbit Health and Status Software Verification Report Data Storage Status Instaliation Confirmation Instellation Confirmation Instellation Confirmation Insertory Data Manufacturing Data Platform Health and Status Production Data Bundle Compliance Status
	Optimization Parameters Production Process Parameters	Anomolies Calibration Parameters Conditioned Data Delivery Data Docking Command Production Metrics Storage Parameters	Condtioned Data Historical Data	Compliance Status Data Storage Status Fault Report Instal lation Confirmation Performance Analysis System Health Report	Avionics Subsystem	Deorbit Command	Conditioned Data	Waste Heat			
					Conditioned Data Orbit Health & Status	GN&C Subsystem		Waste Heat		Torque	
					Attitude Telemetry		Propulsion Subsystem				Thrust
	Local Heat	Local Heat	Local Heat	Local Heat	Local Heat Thermal Condition Report	Local Heat	Local Heat	Thermal Subsystem	Local Heat		Waste Heat
	Conditioned Power	Conditioned Power	Conditioned Power	Conditioned Power	Conditioned Power Power Status	Conditioned Power	Conditioned Power	Conditioned Power Waste Heat	Power Subsystem	Conditioned Power	
										Structure & Mechanisms Subsystem	

COMPONENT-FUNCTION TRACEABILITY & CONSIDERATIONS

- Purpose:
 - Map L2/L3 functions to specific components, ensuring all system functions are implemented and traceable to the physical architecture.
- Process:
 - Used the <<Allocate>> relationship in SysML to establish traceability between functions and components.
 - Identified gaps where functions lacked associated components, leading to the addition of new functions or refinement of existing ones.
- Design Considerations:
 - Avoided gold plating by ensuring each function was allocated to the appropriate component without redundancy.
- Outcome:
 - Gaps in tracing highlighted the need for new or refined functions, ensuring comprehensive functional coverage.

Name	Allocated L1 Functions	Components	R Allocated L2 Functions
	1 4.1 Manage Resources(context Logistics & Storage Subsystem)	Product Storage Unit	1.4 4.1.4 Store Preform at Target Parameters(context Material Storage Unit)
	3 4.2 Manage Logistics (contrait Logistics & Storage Subsystem)	Material Handling Robotics	3 4.2.5 Store Manufactured Product(context Product Storage Unit)
	an 2.1 Perform System Maintenance(context Logistics & Storage	Inventory Management CSC	3 4.2.4 Secure Docking Connection(context Docking Ring)
	Subsystem)	Docking Ring	2 4.1.5 Transfer Preform to Production(context Material Handling Robotics)
E. Garage		Material Storage Unit	3 4.1.3 Receive Resupply(context Material Handling Robotics)
imi Logistics & Storage Subsystem			4.2.3 Prepare Fiber for Transport (Automated handling and packaging)(context Material Handling Robotics)
			3 4.1.1 Track Resources (Automated tracking) (context Inventory Management CSC)
			4.1.2 Request Resupply (Autonomous resupply request) (context Inventory Management CSC)
			4.2.1 Schedule Resupply Operations (Automated scheduling)(context Inventory Management CSC)
			12 422 Coordinate Resource Transfers (Remote coordination)/context Inventory Management (SC)

		-				1			
Legend	臣	· 🗖	L2 F	unc	tions	S		يلد ا	
✓ Allocate	5 C C C C C C C C C C C C C C C C C C C	🐻 1.1.3 Heat Preform(context Preform Heater)	🔒 1.1.4 Draw Fiber from Preform(context ZBLAN Fiber Dr.	1.1.5 Cool/ Anneal Fiber(context Fiber Annealer)	1.1.6 Spool Fiber(context Spool Tension Motor)	1.1.7 Monitor Fiber Quality(context Spectroscopy Sense	1.1.8 Correct Defects(context Process Control CSC)	1.1.9 Adjust Production Parameters (Autonomous feed)	🔂 1.2.1 Collect Real-Time Production Data(context Produc
🗄 🛅 Structure [Manufacturing]		1	1	1	1				
Fiber Annealer	1		-	2	_				
	-								
Heater Stage Motor									
Preform Heater	1	1							
Preform Holder		-							
Spool Stage Motor									
🔄 Spool Tension Motor	1				4				
🔜 Tension Sensor									

TRADE STUDY

TRADE STUDY PROCESS AND RESULTS

• Purpose:

- Evaluate and select optimal components for AOMS, focusing on high-risk elements, particularly the thermal management system.
- Methodology:
 - Used Pair-Wise Comparison and Utility Curves to assess thermal alternatives based on heat rejection, mass, efficiency, and redundancy.
 - Conducted sensitivity analysis for robustness.
- Thermal Alternatives:
 - ISS Heat Rejection System Radiator (HRSR)
 - Alpha Radiator
 - Deployable Panel Radiator (DPR)
- Results:
 - DPR selected as the optimal solution, excelling in heat rejection, mass efficiency, and deployable area while meeting reliability standards.

Criteria		Re	quirem	ent(s)								
Heat Reje	ection Capacity	0.2	20.1: Th	e the	rmal mana	gemer	nt syst	em shall a	chieve a	a hea	t rejection	
		ca	bacity o	f at le	ast 10 W/ł	kg (thre	shold	l) under no	ormal o	perat	ing conditi	ons,
		wi	th an ob	ojectiv	e of 60 W	/kg or g	greate	r.				
Redunda	ncy	0.2	20.2: Th	e radi	ator syste	m shall	have	a mass pe	nalty fo	or ach	ieving N+2	
		red	dundan	cy not	exceeding	g 300 kg	g, with	h an object	tive of 4	40 kg	or less.	
Radiator	System Mass	0.2	20.3: Th	e tota	al mass of t	he rad	iator s	system sha	ill not e	xceed	d 2800kg	
		(th	reshold	l) and	200kg (ob	jective).					
Radiator	Deployed Area	0.2	20.4: Th	e tota	al deployed	l area d	of the	radiator sy	ystem s	hall n	ot exceed	200m²
		(th	reshold	l) and	50m² (obj	ective)	while	meeting t	he requ	uired	heat reject	tion
		ca	oacity.									
										. '		
				ISS HR	SR	A	lpha Ra	adiator	Deploya	able Pa	anel Radiator	

			ISS HR	SR	A	lpha Ra	idiator	Deploya	able Pa	nel Radiator
Criteria	Wt.	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value
Heat Rejection (W/kg)	0.58	10.78	0.02	0.01	54.82	0.90	0.52	55.97	0.92	0.53
Mass (kg)	0.17	1487.75	0.03	0.01	273.60	0.82	0.14	288.00	0.79	0.14
Deployed Area (m2)	0.15	106.70	0.52	0.08	48.48	0.84	0.13	36.96	0.91	0.14
Redundancy (N+2) Penalty (kg)	0.10	270.50	0.11	0.01	45.60	0.98	0.10	72.00	0.88	0.09
Operational Utility Function (Weighted Sum)			0.10	3		0.88	34		0.89	91

TEST AND EVALUATION PLANNING

INTEGRATION APPROACH & TESTING

- Integration Approach:
 - Structured integration with progressive subsystem testing across multiple builds to ensure functionality at each stage.
- Build Sequence:
 - Build 1: Core infrastructure, power, thermal subsystems.
 - Build 2: Manufacturing and Quality Assurance integration.
 - Build 3: Communications and Software integration.
 - Build 4: Logistics, Harness, Propulsion, final integration.
 - Build 5: Environmental testing (thermal vacuum, vibration, EMI) and final validation.
- Qualification Testing:
 - Verifies system meets performance criteria for space conditions, using inspection, analysis, demonstration, and physical testing.

#	△ Name	Documentation	Test Components	Test Inputs	Test Outputs	Pass/Fail Criteria	Verifies
1	TC-81-001 ♦ Power-Thermal Integration Test	Verify integration of Power and Thermal subsystems	? Test Operator Data acquisition system AOMS Spacecraft - Physical Load bank Power supply simulator Thermal chamber Thermal sensors	 in Power load scenarios in Thermal load scenarios 	 out Power Consumption Data out Thermal Regulation Data 	(마 Power distribution within 5% of expected values (아 Thermal control within ±5°C of target	C.3 Power Budget C.3 Power Budget C.3 Down Budget O.20 Thermal Management
2	TC-B1-002 ◇ Structure-Power-Thermal Integration Test	Verify structural integrity with integrated power and thermal systems Commercy	AOMS Spacecraft - Physical Power supply simulator Strain gauges Structural test rig Tistructural test rig Tistructural test rig Vibration table Vibration table	 	 out Structural Integrity Data out Power and Thermal Performance Data 	$0 \oplus$ No structural failures $0 \oplus$ Power and thermal systems maintain performance within specs	C Approved Materials 0.6 Environmental Survivability 0.6 V O
3	TC-B1-003 Basic ◇ Avionics-GN&C Integration Test	Verify basic integration of Avionics and GN&C subsystems	ADCS simulator AOMS Spacecraft - Physical Command and telemetry simulator GN&C test bench Orbital simulator X Test Operator	 in Simulated Orbital Parameters in Basic Command Sequences 	 out GN& Calculations out Avionics Response Data 	Or Avionics processes all commands correctly Or GN&C calculations within 1% of expected values	0.4 Command and Control F.7 Timeliness

#	Name	Documentation
1	B1 Core Infrastructure and Basic Functionality	Power Subsystem (full) Thermal Subsystem (full) Structure & Mechanisms Subsystem (partial, focusing on critical structural elements) Avionics Subsystem (basic command and data handling) GN&C Subsystem (basic) Rationale: This build establishes the core infrastructure and allows for early testing of critical systems. It addresses long-lead items like power and thermal systems.
2	B2 Manufacturing and Quality Control Integration	Manufacturing Subsystem (full) Quality Assurance Subsystem (full) Avionics Subsystem (expanded for process control) GN&C Subsystem (expanded for microgravity simulation) Rationale: This build introduces the full manufacturing capabilities and quality control systems, allowing for comprehensive testing of the primary mission functions.
3	B3 Communications and Software Integration	Communications Subsystem (full) Software Subsystem (full) Avionics Subsystem (fully integrated) GN&C Subsystem (fully integrated) Rationale: This build completes the integration of all control and communication systems, enabling full autonomous operations and ground control capabilities.
4	B4 Logistics and Full System Integration	Logistics & Storage Subsystem (full) Harness Subsystem (full) Propulsion Subsystem (full) Structure & Mechanisms Subsystem (fully integrated) All remaining subsystems fully integrated and optimized Rationale: This final build completes the integration of all subsystems, resulting in a fully assembled and tested system ready for launch.
5	B5 Environmental Testing and Launch Preparation	Full system environmental testing (thermal vacuum, vibration, EMI/EMC) Simulated microgravity testing of critical functions Final software validation and verification Launch vehicle integration testing Rationale: This build focuses on comprehensive environmental testing and final preparations for launch, ensuring the system can withstand launch conditions and operate in the space environment.

RISK MANAGEMENT

RISK MANAGEMENT

- Structured Methodology:
 - Identifies, assesses, and mitigates risks throughout AOMS's lifecycle.
 - Proactive and adaptive approach ensures early identification and continuous monitoring.
- Risk Assessment Matrix:
 - Evaluates risks on a scale of 1 to 5, prioritizing highlikelihood, high-consequence risks.
 - Focus areas: System performance, safety, and mission success.
- Mitigation Strategies:
 - Real-time monitoring, process optimization, automated inspection, and emergency procedures.
 - Integrated into subsystems, with testing such as Thermal-Manufacturing Integration and End-to-End Production Cycle Tests.
- Risk Reduction Outcome:
 - Successful mitigation measures reduced risk severity.
 - Ongoing monitoring to track effectiveness and ensure system reliability during operations

ID	Risk Description	Initial LxC	Final LxC	Impact Summary
1	Microgravity Manufacturing Process	4 X 4	2 X 2	Variations in microgravity conditions could disrupt
	Instability			equipment.
2	Fiber Pulling Process	3 X 3	1X1	Interruptions in fiber pulling can lead to production
	Continuity			delays and quality issues, reducing operational efficiency.
3	Remote Quality Control	2 X 5	1 X 2	Quality control malfunctions could allow undetected
	System Reliability			defects, compromising product quality and yield.
4	Thermal Management	3 X 4	1 X 2	Inadequate thermal control could lead to
	System Inefficiency			temperature fluctuations, impacting fiber quality and
-				system performance.
5	Material Handling	3 X 3	1X1	Errors in automated material handling could cause
	Automation Errors			contamination, waste, and damage, reducing
				production quality and efficiency.
		5		
		4		

CONSEQUENCE

LIKELIHOOD

SYSTEM SPECIFICATION (A-SPEC)

You are here

SYSTEM SPECIFICATION (A-SPEC)

• Purpose:

 The A-Spec (System Specification) defines the functional and performance requirements for the AOMS system, ensuring all subsystems meet mission objectives.

• Key Elements:

- Requirements Hierarchy: Organized by operational, performance, functional, and constraint requirements, aligned with the needs identified in earlier phases.
- Key Performance Parameters (KPPs): Critical, nonnegotiable requirements that are essential for mission success.
- Verification Methods: Each requirement includes defined methods for verification, ensuring compliance (e.g., inspection, test, analysis).
- Outcome:
 - Provides a comprehensive blueprint for the AOMS system, aligning design, testing, and validation with mission goals.

Report	Total	Quantitative	% Quantitative	Binary	Qualitative
Requirements Analysis Report	95	42	44%	28	19
Functional Analysis Report	101	47	46%	28	20
Trade Study Report	108	60	56%	28	20
Concept Design Report	108	60	56%	28	20
Test and Evaluation Plan	108	60	56%	28	20
System Specification	108	76	70%	32	0

CONCLUSION: SCHEDULE ANALYSIS, LESSONS LEARNED, & RECOMMENDATIONS

EARNED VALUE MANAGEMENT ANALYSIS

- Schedule Performance:
 - Schedule Variance (SV) and Schedule Performance Index (SPI) tracked milestones against planned timelines.
 - Initial delays during Project Setup & Research reflected negative SV in August and September 2024.
 - By October, schedule recovery was evident, with faster-than-expected progress in later phases, driven by MBSE efficiencies.
 - Despite some delays in CDR and FAR reports, positive SPI was maintained in November and December.
- Cost Performance:
 - Early cost overruns due to intensive Project Setup & Research efforts.
 - Application of MBSE and risk management strategies helped reduce costs, leading to savings in later stages, particularly in A-Spec and Test Plan development.

								_		
Name	Cost	BCWP	BCWS	ACWP	EAC	CV	SV	SPI	CPI	TCPI
Advanced Orbital Manufacturing System	\$20,225.00	\$30,900.00	\$30,900.00	\$20,225.00	\$20,225.00	\$10,675.00	\$0.00	1	1.53	0
Concept Approved	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	0	0	0
Project Setup & Research	\$500.00	\$1,000.00	\$1,000.00	\$500.00	\$500.00	\$500.00	\$0.00	1	2	0
Project Proposal	\$3,700.00	\$3,200.00	\$3,200.00	\$3,700.00	\$3,700.00	(\$500.00)	\$0.00	1	0.86	-0
Requirements Analysis and CONOPS Report	\$3,400.00	\$4,200.00	\$4,200.00	\$3,400.00	\$3,400.00	\$800.00	\$0.00	1	1.24	0
Functional Analysis Report	\$3,100.00	\$5,000.00	\$5,000.00	\$3,100.00	\$3,100.00	\$1,900.00	\$0.00	1	1.61	0
Trade Study Report	\$2,100.00	\$3,000.00	\$3,000.00	\$2,100.00	\$2,100.00	\$900.00	\$0.00	1	1.43	0
Conceptual Design Report	\$3,000.00	\$4,500.00	\$4,500.00	\$3,000.00	\$3,000.00	\$1,500.00	\$0.00	1	1.5	0
Test and Evaluation Plan	\$1,400.00	\$3,500.00	\$3,500.00	\$1,400.00	\$1,400.00	\$2,100.00	\$0.00	1	2.5	0
Risk Management Plan	\$600.00	\$2,000.00	\$2,000.00	\$600.00	\$600.00	\$1,400.00	\$0.00	1	3.33	0
A-SPEC	\$625.00	\$2,000.00	\$2,000.00	\$625.00	\$625.00	\$1,375.00	\$0.00	1	3.2	0
Final Report & Defense	\$1,800.00	\$2,500.00	\$2,500.00	\$1,800.00	\$1,800.00	\$700.00	\$0.00	1	1.39	0
End of Term	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	0	0	0

RECOMMENDATIONS

- Consider a Student Mentoring Program:
 - Implement a mentoring system where past students provide granular feedback to those currently working on projects.
 - Benefits:
 - Support for navigating challenges and refining approaches.
 - Guidance on best practices, common pitfalls, and effective strategies for systems design, requirements, and verification.
 - Reduced advisor workload and more peer-supported learning.
- Consider Integrating MBSE into T&E Course:
 - Incorporate MBSE tools like MagicDraw into the Test & Evaluation (T&E) course.
 - Benefits:
 - Enhances simulation and visualization of test cases.
 - Ensures tests align with system requirements and interactions.
 - Provides hands-on experience with tools used in industry, improving system validation and verification.

LESSONS LEARNED

- Passion-Driven Projects:
 - Choosing a topic you're passionate about keeps you motivated through long project phases.
 - Activities like STEM mentoring and designing a mission patch help connect with the significance of the work.
- Consult Reference Architectures:
 - Sanford Friedenthal's reference architecture ensured best practices and improved system design
- Stakeholder Engagement:
 - Continuous feedback, especially from experts like Lynn Harper, refines system requirements and aligns them with real-world needs and market demands.
- Meta Models & Model Organization:
 - Meta models clarify relationships and ensure consistency, enhancing communication and reducing errors.
 - ISO/IEC/IEEE 42010:2022 provided guidance on structuring viewpoints, ensuring clarity and improving report generation.
- Harnessing Metachain Navigation:
 - Using metachains and generic tables streamlines requirement-tracing and aids in visualizing dependencies.
- Requirements Tracing to Functions:
 - After initial tracing, evaluate if the right functions and requirements are identified.
 - Avoid forcing relationships that aren't fully accurate, as this can cause inconsistencies.
 - Functional decomposition and activity diagrams are crucial to ensure meaningful relationships. Careful tracing avoids compromising system integrity.

Logical Architecture

Documentation = "The system conceptual block diagram present a simplified, hip-level representation of the AOMs architecture. This diagram delineates the logical elements that compose the system, hiphlighting their functional roles without delving into detailed design aspects. The purpose of this diagram is to offer a clear, conceptual view of how AOMS will function, focusing on critical system components such as the Comms Element, Power Element, Thermal Element, and others: This conceptual framework systems the subsequent habases of system developmen ensuring that the overall design remains aligned with the intended operational objectives of AOMS."

THANK YOU!

META MODEL

这 Expression				× 🕅 Expression			×	
Specify name and expression for the Select and specify operations for calc results of all of these operations.	e custom column. :ulating/gathering values of custom column. If several oj	perations are specified, custom coli	umn will contain	Specify name and expression for the Select and specify operations for cal results of all of these operations.	he custom column. Iculating/gathering values of custom column. If several c	operations are specified, custom column will contain	15 Autor	
Name: Allocated L2 Functions	Type: 🔛 Element	▼ Single	Value	Name: Test Components	Type: 🔛 Element	▼ Single Value		
Expression Expression	Metachain Navigation	Edit	Use as Remove	Expression Expression 타 유 Metachain Navigation	Metachain Navigation 😗	Edit Use as	. Remove	
Simple Navigation Sind Sind Sind	Operation Name: Metachain Navigation				Operation Name: Metachain Navigation			
····· 🕶 Create operation	Metaclass or Stereotype	Property	Insert	····· 🖭 Create operation	Metaclass or Stereotype	Property	Insert	
	Block [Class]	Part	Deveryor		«» TestCase [Behavior, Operation]	Method		
	◇ Property	Туре	Remove		1 Activity	Owned Element	Remove	
	Block [Class]	Allocated From			«» AllocateActivityPartition [ActivityPartition]	Represents		
					Property	Туре		
	Results Filter by Type: <none></none>				Results Filter by Type: <pre> </pre>			
	☑ Ordered ☑ Unique				Crdered Unique			
		OK Cancel	Help Evaluation Mode			OK Cancel Help	Evaluation Mode	